
Whitepaper
BuildableWorks.com1

How We Build
Web Applications

Whitepaper

https://www.buildableworks.com

Whitepaper
BuildableWorks.com2

Table of Contents

About Buildable... 3

Web Application Architecture.. 4

Our Process... 6

 Application Architecture Guidelines.. 8

 Management.. 8

Anatomy of a Web App... 10

 User Experience Design... 10

 Application Build and Deployment... 14

 Frontend Tools... 15

 Backend Tools... 20

 Authentication and Security.. 22

https://www.buildableworks.com

Whitepaper
BuildableWorks.com3

About Buildable
Our nimble, versatile team of full-stack engineers, creatives, and developers come to work every day with
the knowledge we’re making the stuff that will change our clients’ work lives for the better. It’s why we attract
and keep some of the best technical talent in the industry, and it’s how we deliver the highest quality work
on every project.

Collaboration: Our Agile mindset ensures
communication, transparency, and buy-in at every
stage of a project.

Pragmatism: We build things that solve problems
now and work for years into the future.

Humanity: Our people are important because our
clients’ people — and their experiences with our
technology — are important.

Spark: We help clients imagine a better way to get
their jobs done. And then we build it.

Introduction
In this whitepaper, we describe what a software web
application does, how it is built, and why we build the way
that we do. Throughout this book, it will become clear to
you that Buildable software engineering is cutting-edge.
We are masters of design and development, and we’ll
take the time to get to know your business as well as we
know ours.

Software is built as a series of programs that are stored in
computer memory. A software web application, then, uses
the computer system to perform special functions beyond
the basic operation of the computer itself. It is designed to
perform a group of coordinated functions, tasks, or activities
for the benefit of the user. We have built applications to assist
in diagnosing medical conditions, quoting purchases, and testing water quality.

Distinct from other software is the web application, which is written in HTML, CSS, JavaScript, and other web-
native technologies. These applications typically require an internet connection, although today most offline
versions that can selectively synchronize with a web server.

Single-page applications (SPAs) are web applications that fit on a single web page and provide a user
experience like that of a desktop application. All HTML, CSS, JavaScript, and other necessary code files are
retrieved with a single page load. Oftentimes, appropriate resources are dynamically loaded and added
to the page as necessary in response to user interaction. These interactive functions require dynamic
communication with the web server.

Throughout this whitepaper, we describe our process of web application development. We note key
elements of this process in this way so that potential clients can become more familiar with the technical
jargon we will use to describe features of our applications.

We look forward to discussing ideas with you.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com4

Application Architecture

Front End
Angular, VueJS, React, Bootstrap, jQuery, and JSON Web Token Authentication

 RESTful API
ASP.NET Core Controllers

Static Files

 SQL Server / MySQL
Database Back End

File System
Monit

NGINX and Kestrel
.NET Core

ASP.NET Core

 Entity Framework
Database

JWT Cookie
Authentication

wwwroot
Folder for Public Files

MVC Controller
API

The RESTful API is entirely written in C# with Visual Studio as an ASP.NET Core single-file web application.
The ASP.NET Core application provides an embedded web server, Kestrel, which can be hosted through IIS
on Windows servers or through NGINX on Linux machines. The database access is entirely abstracted using
Entity Framework, which maps database models to database tables and provides a zero-SQL approach to
building a web application.

Before getting into detail, it may
be helpful to have an idea of
the structure of a Buildable web
application.

The frontend of the application is
built with Angular, Vue, or React–
written in TypeScript, HTML, and
CSS–and delivered to the browser
as a single JavaScript file. Bootstrap
provides mobile responsiveness
and a friendly user interface. jQuery
is used wherever the application
requires functionality beyond what
Angular can offer, for example, with
time fields and input controls. The
frontend communicates exclusively
with the backend through a RESTful
API layer and stores a JSON Web
Token cookie for authentication.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com5

The web server technology is two-fold. The .NET Core web application runs with Kestrel, which is a highly
efficient, embedded web server. Kestrel invokes the JSON Web Token (JWT) handlers and API controllers.
NGINX is the actual web server frontend, which provides the initial connection-handling, Geo-IP filtering,
and SSL handshake before requests are sent to Kestrel. NGINX provides SSL (Secure Sockets Layer, for
authenticated information exchange) and access to other static files, such as mobile tablet hashes. It acts
as a proxy, forwarding requests to Kestrel.

The backend is connected to any database. Our preference is either Microsoft SQL Server or MySQL. All
strings in the database are encoded in Unicode (UTF-8). SQL Server or MySQL can be hosted locally (for
development) or on a secondary server (for production) on Linux, Windows, or in the cloud, and we create
twice-daily backups.

Static files required by the single-file application are all located under the web application wwwroot folder
and are made of third-party files (such as CSS for styling) or images required by the application. Some
static files, such as mobile tablet hashes, are stored elsewhere and are accessible directly through NGINX.
Static, frequently accessed files are generally better served by NGINX, avoiding the request, and proxying
overhead of accessing Kestrel.

Lastly, the web application is hardened with Fail2ban, which operates by monitoring log files for potential
intrusion and banning potential intruders for 24 hours by adding rules to the firewall. In addition, the
application is monitored with Monit, a software configured to send email alerts when logs contain a pattern,
or the machine performance breaks a specific threshold.

Application Architecture Overview

https://www.buildableworks.com

Whitepaper
BuildableWorks.com6

Our Process
The Buildable Process for software development is sophisticated, modern, and clean. Here’s how we do it.

Application Architecture Guidelines
To understand the Buildable software engineering process, it is important that we present a quick overview
of our application architecture guidelines, which have been designed to provide a solid foundation for any
software we build.

Every project is built through multiple Sprints and each Sprint begins in the design phase and ends in a
deployment. Upon approval of the design, the Buildable software engineers create a functional edition
of the design. Throughout the trilogy of coding, testing, and assuring quality, source code (SC above) is
carefully controlled with Git so all changes can be tracked and audited. Then the project is brought to the
client for Sprint review. When the client is fully satisfied with the Sprint build, it is deployed. Depending on
the size of the project, the final Sprints will include end-to-end testing called UAT and after the result of the
which the product will be deployed live.

SC

Design Code Test QA

SC

Review Deploy

Agile Project Management

We apply strict design patterns to provide code separation,
code reuse, and bug mitigation. Maintaining these principles
results in intelligent, manageable code. Design patterns are
methods of organizing an application’s source code into
layers, or folders. This process is called code separation.
There are many variations of design patterns, and software
engineers fit patterns to each individual project as they build.

Developers build applications by
following a pattern that makes
sense for each individual project.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com7

The Model-View-Controller (MVC) and
Model-View-View Model (MVVM) are
the two design patterns for building user
interfaces most frequently followed by
the Buildable software engineers. These
require the use of behavior mechanisms
(events), reactive mechanisms
(observables), use of tasks referenced
from the Task Parallel Library (TPL), and
models.

An application programming interface
(API) is a set of principles and tools
for building application software. APIs
help standardize the way developers
build applications. This way, software
is consistent with the user’s operating
environment.

The Data Access Layer (DAL) contains
classes, drivers, and models that
primarily provide access to the database
system. This separates low-level data-
accessing APIs or operations from high-
level business behaviors, which are kept
in the BOL.

Application Architecture Guidelines (cont.)
Code reuse is a critical advantage that developers gain when utilizing design patterns. Once a set of
functions has been written for one project, due to the process of code separation, those same functions can
be reused in a future project.

Each layer of an application’s codebase, the entirety of an application’s
source code, is assigned a specific kind of task which should not require
any of the other layers. Rather, a task accomplished in one layer should
ultimately offer something particularly useful to the other layers and,
consequently, the system.

Code separation, in addition to enhancing flexibility and efficiency, also
serves the purpose of bug mitigation. This is the isolation of errors in layers
of code, rather than having to debug an application by working through
its entire codebase.

Code is organized into layers per different design patterns. Teams work
together more efficiently with these practices and can complete projects
much more quickly as they are able to reuse powerful code. Following is a
selection of the layers, design patterns, frameworks, and other principles
implemented by the Buildable software team.

Interaction amongst
the layers creates the
system, something higher-
level than the working
parts would be in and of
themselves.

Models hold data (information), but don’t
perform services that manipulate it. The View
is the way data is displayed. The Controller
reacts to the user’s interactions with the View.

The DAL provides a solid base for Entity
Framework and LINQ queries, streamlining
data access.

APIs specify how software components
should fit together. By following these
principles, software is more consistent
across platforms.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com8

The Business Object Logic (BOL) layer is built exclusively to accomplish
repetitive tasks related to the business the application will serve.
Examples of BOL are EmailBOL, ConfigBOL, and AmazonS3BOL.

The BOL typically contains helpers. These are static classes with static
functions, or behaviors. BOL helpers consume database models, execute
queries with LINQ, update database records, send messages to log files,
send emails, process payments, and more.

Error handling is performed in all layers, using “try/catch” statements to
trap errors. Each is logged with information about the error, including the
data, time, thread ID, class, and method. All errors are centralized to a
single file and graded from Debug, Info, Warning, Error, to Fatal. Error logs
are monitored on the production servers, which the Buildable software
engineers are automatically alerted to when errors and fatal errors
occur.

It is expected that the
BOL classes interact with
outside systems, such as
Amazon Web Services,
databases, email servers,
and file systems.

Powerful applications are built
by the exchange of knowledge
and sharing of workload
among software teams.

Assigning team members
to work on different layers of
code is critical for adhering to
project deadlines.

The Agile Process
The Buildable team utilizes CI/CD Software (GitLab). GitLab
is built for Agile project management, an iterative approach
to managing software projects centered on sprints and
client feedback. An Agile approach is best for building most
highly complex software web applications and encouraging
client communication.

Sprints are fixed-length iterations of work that guide and
summarize a team’s operations. Tasks are assigned to
individual team members, who can then request feedback
from and send updates back to the team. Priority is
assigned to each task, as well as a status within the workflow
of the project. Workflow generally follows in succession from
To Do, In Progress, In Review, to Done status. Having an Agile
workflow means that the team can stay focused and adapt
quickly to changing guidelines and deadlines.

Every morning, the Buildable team has a standup, a
15-minute meeting optimized for efficiency. This allows
for the software team to synchronize their efforts without
losing development time. Each team member speaks to
their progress on projects from the workday before and
their goals for the day at hand. The project manager
also oversees the scrum board, which visualizes the
entire workflow of a sprint. Individual tasks are filed under
columns by their status in the workflow. As team members
accomplish tasks, they are moved through the workflow.
Through this process, the project manager can easily
monitor progress and forego problems before they arise.

A project manager’s
responsibilities, among other
things, are to ensure that teams
are working most efficiently
and creating the best possible
product for the client.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com9

The Agile Process (cont.)
Source control, also understood as version or revision control,
is a practice of software configuration management whereby
changes to code are tracked, drafted, and reviewed before
being applied to the final edition of a project. Software
engineers often utilize source control systems, such as Git, to
track and coordinate file changes using a repository.

Buildable hosts a private, local GitLab repository for source
control. The Buildable tool chain, development environment,
and publishing scripts integrate with source control. Access
to the central Git repository is controlled through specific per-
developer credentials. The Git repository is backed up on a daily
schedule, as well as a per-project basis.

Perhaps most essential to Buildable source control is our
granularity rule: All change sets committed to Git must be
atomic in nature (i.e. centered solely around one feature
request or one bug fix) and submitted with a descriptive commit
message (which may or may not contain an associated Gitlab
ticket for project management purposes). Version numbers
are committed to source control as well, further enhancing
traceability of our code.

In addition, Buildable software engineers follow an incremental
development cycle. Changes are worked on locally, committed
locally, pushed to the central repository, deployed on a test
server, and tested again before other tasks can be addressed.

Source control transparency is implemented for the
development team. The Git central repository sends automated
and detailed email each time changes are submitted (i.e.
committed and pushed). The entire development team receives
these emails.

Each team member works on localized
versions of the code, leaving the final
edition untouched until changes are
approved.

Only the software development team
has access to the central Git repository.

Before changes to a final edition are
official, each is developed locally and
submitted for approval. Code is tracked
this way throughout development.

Developers use JSON as an efficient
and dependable manner of encoding,
transferring, and embedding
information into a database.

Data put in source control includes
the following components...

• Source code

• Database scripts

• JSON data

• XML data

• Binary images

All other files in source control are otherwise
required to build and deploy a project.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com10

Anatomy of a Web Application
A web application consists of several interconnected parts that depend on each other for performing
complex functions and displaying vast amounts of information. An application depends critically on the
backend for functional programming and on the frontend for appealing, usable form.

In addition, user confidentiality should be a primary concern for all businesses. Best practices for
authentication and security are crucial to producing a successful application.

The primary goal of UX design
is to provide a satisfying
product experience to the user.

UX designers craft application
experiences to fit the industry it
will serve.

User Experience Design
For Buildable, user experience (UX) design is more than
just a concept or simply wireframing. It is a dependable
framework for exquisite design and engineering–and a
satisfied, productive user.

This UX state of mind is especially active throughout
the frontend development stage of Buildable software
development. This practice further ensures that we are
building products of excellence. At the forefront of our
design and engineering is the enhancement of users’
experience.

User experience (UX) design adds much to the quality
of an application. The role of UX is often overlooked,
but that isn’t necessarily negative. In fact, it can be
considered a compliment if someone does not directly
notice a design. Design is often successful by fitting
right in with the “flow” of an interaction. It is easier to
find examples of bad design because great design is
invisible, so to speak. In some excellent cases, though,
UX design is so successful that the user is delighted and
tells all their friends about the application’s relevance,
ease-of-use, and aesthetic appeal. Word-of-mouth
advertising is the most effective campaign strategy. So,
it is justified on many levels to pay due attention to the
experience of your product.

Buildable UX work begins by reviewing the client’s
business model, thoroughly understanding the purpose
of the application, and planning for the greatest impact
on the goals of the user. The beauty of UX is that it form-
fits as necessary to each project. The influence of UX
in Buildable web applications can be traced through
a timeless, six-step process: discovery, wireframing,
design, review, development, and deployment.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com11

The Buildable software
team meets with the client
to discuss application
requirements. Designers can
start brainstorming look and
feel throughout discussion.

UX designers strategize before
designing, following the
timeless adage: Form follows
function.

User Experience Design (cont.)
During the discovery stage, the Buildable team meets
with the client, discussing fundamental goals and
expectations, as well as core usability requirements.
These requirements are the barebones of a software
web application: what it must ultimately accomplish to
be successful. In addition, the designer will inspect the
client’s brand materials. If the client has written copy, such
as that in brochures or a website, the designer will also
review these to find a voice for the design. Sometimes
the voice isn’t used solely for the copy of an application.
The voice can, for example, be expressed in the way its
information is organized. An application used in a medical
office will be structured in a way that makes sense to, say,
a surgeon. An application used by a department store will
be organized differently, in a voice that will be helpful for
salespeople or their consumers.

Once the usability requirements, brand materials, and
voice have been set, the designer can get to work
on structuring the site in the wireframing stage. The
wireframe will express how the application’s information
and functions will appeal to the user (though it won’t yet
have aesthetic appeal, which is decided in the design
stage). Wireframing is dedicated to ensuring that the
user interface (UI), the way software is structured for
interaction, of the application makes sense.

Equipped with the wireframe, the designer proceeds to the
design stage. Generally, clients have an existing logo or
color scheme for the designer to work off. If not, Buildable
designers are happy and qualified to create them. While a
company likely wants to stand out from their competition,
they also want to make sense to their user. For example,
users expect environmental organizations or financial
businesses to use green in their branding.

Choosing a color scheme based on its audience’s
expectations should feel less like strict boundaries and
more like helpful guidelines, useful in the case that
there isn’t a specific purpose for including some color.
Therefore, color schemes–the main color(s) and accent
color(s) used to identify a company–must be carefully
chosen, as they play an important role in the overall
success of an application. Whether we acknowledge it
daily or not, colors have hierarchical effects on us in every
moment of our lives.

UX designers ensure that an
application’s UI is conducive
to the user’s workflow.

There are a wide variety
of color tools, such as
digital color pickers, to help
designers choose colors that
work well together.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com12

User Experience Design (cont.)
Choosing specific colors to convey meaning in a web application is one of the clearest ways for the
designer to communicate a message to and instill emotions in the user. For example, a warning message
should be red, orange, or yellow, which conveys a message of “danger” to the user, prompting them to be
careful when making their next decision. More serious messages should be red, while less serious alerts
can be yellow. The designer recognizes the common connotations that people have with color and uses

these to make it easy for new users to adapt to a product. When a color scheme makes sense and conveys
deeper meaning to the user, a business and its web application(s) are even more successful because the
application goes beyond satisfying usability requirements.

From the UX designer’s perspective, the most important consideration of all is the user’s experience,
including how positively the user views their experience with the product after its purpose has been served.
An application must be designed to be easy to use for beginners yet efficient for experienced users, and
leave all users feeling successful and in control. The best outcome is when the application, no matter its
goal, is engaging and delightful for the user.

Informing users of the status of processes makes
a huge impact on the application experience. For
example, confirmation of a successful process lets
the user know that there is nothing to worry about.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com13

User Experience Design (cont.)
Good design allows for a product’s affordances–what the product can do and how these actions are
performed–to be easily discovered by the user. Signifiers are used by designers to flag affordances. One
of the most common signifiers in web applications is the button. For example, buttons can be used to

differentiate important links from common links or reveal a hidden menu bar
to the user. A particular kind of button is the call to action (CTA) button.
These call for extra attention from the user. The goal of a CTA button
stems from the web application’s overarching goal. For example, for an
ecommerce application, a CTA button will draw the user toward purchasing
actions. For a medical diagnosis application, the user will be drawn toward
completing the form.

Users like to be in control. When an application is consistent, users know
what to expect and can learn how to use the product most efficiently. Fonts,
dimensions, icons, buttons, colors, and all other aspects of a design must
have consistent appearance and intent throughout the application. People
like patterns because they minimize the cognitive effort required to use a
product. When some piece of a consistent design goes rogue, the user will
notice. If it is not, like a CTA button, designed to distract from the rest of the
design, that piece of design will disrupt the user’s flow, resulting in a negative
experience associated with the application.

A design can be perfect to a designer, but
nothing matters more than the client’s
opinion. During the review stage, the

designer has received approval from the
project manager to send the design to the client. At this point, the client has
full license to request new features or changes, and the designer responds
accordingly. It is critical to a project’s deadline that the design does not
get passed to production before review. Consider a situation where a client
decides that they do not want a certain feature in their design, after the
production may have spent hours implementing it. Only once the design
has received the go-ahead from the client does the design get handed off
to the development team, for the sake of efficiency.

The development team starts the production stage by fitting the
application’s IA into the wireframe constructed by the designer. Once that
is settled, the team references the design to lay styling over the structure.
Communication amongst team members is imperative at this stage, as
the rendered project must echo the design. Therefore, Buildable makes
persistent use of Gitlab project management and Git source control
described earlier in this whitepaper.

A project resulting from the Buildable process is
a fully functional web application, designed and
developed with the user in mind.

Developers work closely
with designers to ensure
that the structure and
interface of an application
match the design
approved by the client.

Only once the
client approves of
the design does
it get passed to
production.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com14

Build and Deployment
An application can be roughly divided into two parts: the frontend and the backend.The frontend is the
aspect of the application that the user sees, created with the HTML, CSS, and JavaScript languages and
their frameworks (such as Bootstrap and jQuery). The backend deals in executing functions that manipulate

data from the database. Users can access data
because backend developers use tools like REST API, C#,
Entity Framework, and LINQ.

The construction of a web application can be roughly
divided into two parts. The frontend deals with the
client-side of a client-server relationship in a computer
network, whereas the backend deals with the server-
side. The client is run on a user’s computer or mobile
device. When an application is run, the code is
downloaded, run, and displayed by the browser. Server-
side code, on the other hand, is run on the server,
then its results are downloaded and displayed in the
browser.

The frontend is the aspect of the application that the
user sees. Frontend developers build an application to
display information in a structured context that makes

sense to the user. Applications are viewed in some sort
of browser, whether it be on a desktop or mobile device. Frontend developers must ensure that applications
are functional and maintain appealing form in the face of differing browser interpretations of code which
is called cross-browser testing. Mobile applications are generally less information-dense than desktop
browsers because vast amounts of information or detail
don’t scale well to small screens.

User behaviors occur based on, for example, a task they
are trying to accomplish or the information they are
seeking. For this reason, among others, it is beneficial for
frontend developers to work with user experience (UX)
designers, who are trained professionals in ensuring a
satisfying experience for users. UX is in the same family
as user-interface (UI) design and human-computer
interaction (HCI); however, UX places greater emphasis
on the user’s emotions throughout an experience. In
the digital world, it’s critical to consider how a user
feels because this determines the overall success of an
application. An application can have a beautiful exterior
and a bulletproof interior, but it will nonetheless fail if
the user can’t accomplish their tasks or finds a more
pleasing visual interface elsewhere.

Backend developers deal in the server-side of an application. A user interacts with the application in the
frontend, and these interactions are processed in the backend. Information (data) is added, adjusted, or
removed in the database, which is stored on a local or remote server.

Clients are only able to
communicate with servers
when they are connected to the
Internet.

Whether or not a design is
responsive, adaptable to
screens on different devices, is
one task of a frontend developer.

User interaction is the basis of
an application’s codebase.

Users come first. Applications
have no purpose if they are
unusable, or else do not help
the business they are meant to
serve.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com15

Frontend Tools

To lay a framework for and fill in the content of an application,
frontend developers use HTML (hypertext markup language).
Styling can be applied in HTML, but this is rarely done because
it makes far more sense to separate style from structure.
The reasoning for this is especially evident in practice when
developers are building large-scale applications. These might
link to several stylesheets and scripts, which could not be
accomplished with HTML alone.

Stylesheets are written in SCSS (cascading stylesheets) and
compiled to CSS, and linked to the HTML file. SCSS allows
programmers to use variables in CSS and fosters CSS
templating and reuse. For example, Bootstrap theming is done
through SCSS. Since certain style rules are very common,
developers have created CSS frameworks like Bootstrap to make
styling more streamlined.

With the framework and styling set, an application is
presentable. However, HTML and CSS don’t lend much to user
interaction, aside from basic effects like rotation or dropdown
navigation on hover. These pages, with no dynamically updating
content, are referred to as static. For an application to have
powerful interactive potential, it must involve JavaScript (JS).
JS is used to create dynamically updating content, control
multimedia, animate images, and perform other complex
behaviors that cannot be accomplished in markup or styling
languages.

Fo
un

d
a

ti
on

Fr
a

m
ew

or
ks

Designers specify text
styles in CSS. There
are many aspects to
the look and feel of
text, and even subtle
changes can make a
big difference.

Bootstrap allows
frontend developers
and designers to
design for mobile
responsiveness.

JavaScript is essential
for creating dynamic
websites, which reveal
different content
under different
circumstances.

Bootstrap Angular

React

jQuery

Redux

Vue

JavaScriptSass

https://www.buildableworks.com

Whitepaper
BuildableWorks.com16

Build and Deployment (cont.)
JavaScript also allows for API integration, further
empowering developers to create impactful web
applications. JavaScript is used to create dynamic
applications, which can selectively reveal content. Server-
side JavaScript dynamically generates new content on
the server, whereas client-side JavaScript dynamically
generates new content inside the browser. For example,
client-side JavaScript might create a new HTML data, insert
data requested from the server into it, then display the
table in a page shown to the user. JavaScript gives front
and backend developers great power to create dynamic
applications.

Programmers like to use frameworks to be able to access
time-tested building blocks of code. An application is
typically built with 8-10 different frameworks and dozens of
common libraries, if not more.

Using these blocks, programmers can offer powerful
applications to their clients in much less time than if they
had attempted to write them in vanilla code, without using
frameworks. Buildable programmers are highly qualified to
write vanilla code, but they also know exactly the right times
to use frameworks. They can do more with fewer lines of code,
and get the job done well and fast.

There are many frameworks in use in the world of web
development, and more are rising all the time. It takes a
trained eye to select combinations of frameworks that will be
used in tandem to create the best possible application. Over
years in the software development business, Buildable has
become extremely familiar and proficient using frameworks
like Bootstrap, jQuery, Angular, React, VueJS, and RxJS.

With frameworks and
other tools, production
is incredibly fast.

Buildable applications
are created with the
power of several
foundational
technologies and
frameworks.

Developers build tools and
share their ideas to promote the
production of better software.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com17

Build and Deployment (cont.)
The jQuery framework is nowadays mostly used for DOM manipulation
as frameworks are moving away from depending upon jQuery. For
example, Bootstrap 5 and Angular no longer include jQuery but
jQuery still has its place for compatibility and executing browser-
independent functionality.

Utilizing JavaScript frameworks, developers can write less code, yet
perform more tasks. They allow programmers to use templating for
component reuse and they simplify RestAPI, Ajax interactions and
DOM manipulations, for rapid web development. Ajax is used to
refresh data, make quick, incremental updates to the user interface
without reloading the entire browser page. The DOM (Document
Object Model) is a browser API that represents and interacts with
any HTML or XML file. It allows code running in a browser to access
and interact with every node (each representing an element) in the
document.

Angular, VueJS, and React are full-fledged website frameworks
that allow us to design web applications that are responsive and
consistent with underlying business logic. The elements on the page
react and evolve with a user’s interaction, according to fundamental
processes that are driving the purpose of the application itself.

Redux is a tool for managing both data-state and UI-state in
JavaScript applications, generally used in tandem with Redux.
Developers can write applications that behave consistently, run in
client, server, and native environments, and are easily tested. It’s ideal
for use in SPAs, where managing state over time can be complex.
Redux is also framework-agnostic so, while it was created with React
in mind, it can be used together with Angular and VueJS.

Using each of these tools described and some others, Buildable
frontend developers create effective, efficient, and aesthetically
appealing application interfaces.

Web applications are a sum of layers, from structure to design,
content to functionality. The frontend is what the end-user sees. What
powers the application, though, the user does not see. The technology
and programming behind frontend interfaces are called the backend.

The backend consists of the server and the database. Sometimes
called the brain of the application, the backend is the machine that
runs a site. It is always running in the background, delivering smooth
functionality, and drawing information from the database right into
the browser. Backend code adds utility to everything the frontend
designer creates.

The DOM is a complex
document loaded in the
browser. jQuery makes
it easier to write DOM
manipulations.

Angular makes it possible
to design web applications
that make sense with
business logic.

The backend can be
thought of as layers that
provide functionality
and information to the
application’s frontend.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com18

Build and Deployment (cont.)
When a user accesses a web application, they are requesting
information from a server via the Internet. As the user interacts with
the dynamic web page, they make requests for information. Server-
side APIs structure how data is exchanged, then server-side scripts
and frameworks take that information and process the request, pulling
what they need from the database. Then, the server sends information
back over the Internet to be delivered to the frontend of the application.
Anything you see on a dynamic web application is made possible by
back-end code, which exists on and is powered by a server.

Responsibilities of the backend include:
• Database access (SQL Server, MySQL, SQLite, MongoDB, etc.)

• Web server technologies (Apache, NGINX)

• Cloud computing integration (Amazon Web Services, Azure)

• Server-side programming languages (Python, PHP, JavaScript, Node.js)

• Content management system development, deployment, and
maintenance

• API integration

• Security settings and hack prevention

• Reporting analytics

• Backup and restore technologies

In this whitepaper, we will cover just a few of the powerful technologies
implemented by Buildable backend software engineers.

Backend developers use a wide array of programming languages and
frameworks when building server-side software and choose these on
a per-project basis. Applications may have specific requirements that
call for the use of a particular language or framework, or a certain set of
frameworks might work together to satisfy requirements in a powerful way.

When there is an interaction
on the frontend, the backend
must communicate through
a series of layers to access
the necessary information.

Backend software engineers
must ensure that databases
are created, integrated, and
managed effectively.

Analytics are important for
gauging the effectiveness of
your web application.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com19

Build and Deployment (cont.)
ASP.NET Core is an open-source and cross-platform
framework for building modern, cloud-based, Internet-
connected applications, such as web applications
and mobile backends. It was created to optimize
development frameworks for applications that are
deployed to the cloud or run locally. Key features of ASP.
NET Core include:

• Unified UI and API build stories

• Integrated frameworks and workflows

• Built-in dependency injection

• A lightweight HTTP request pipeline

The .NET Framework has
its runtime environment,
which allows code to be
run on any hardware on
which .NET is supported.

ASP.NET Core builds on ASP.NET, which was released over 15 years ago. The redesign consists of architectural
changes that have resulted in an open-source framework that can be run not only on Microsoft operating
systems but also on Linux and OSX. Since developers only need to include the packages they need, they
are left with a smaller application surface area. This entails tighter security, reduced servicing, improved
performance, and decreased costs.

Entity Framework (EF) is an object-relational mapper enabling .NET developers to work with relational data
using domain-specific objects. EF eliminates the need for most of the data-
access code that developers usually need to write.

Language-Integrated Query (LINQ) allows a single, general-purpose
declarative query facility to be applied to all in-memory information,
not just information from external sources. Both LINQ and EF allow for
compilation testing on database access.

C# is the main programming language of the Microsoft .NET framework. It
is a modern, typesafe, object-oriented, and comprehensive language with
advanced features. Features that distinguish C# from other languages
are its portability, strong typing, metaprogramming, memory access, and
polymorphism.

PHP (Hypertext Preprocessor) is an open-source scripting language. PHP
files can contain text, HTML, CSS, JavaScript, and PHP code, although the

code is executed on the server and returned to the browser as plain HTML. PHP generates dynamic page
content, handles files on the server, collects form data, sends and receives cookies, manages data, controls
user-access, and encrypts data. It runs on various platforms, is compatible with most servers used today,
and runs efficiently on the server-side.

We’ve already discussed client-side JavaScript, the version of JS extended to enhance and manipulate web
pages and client browsers. It is also available as server-side JavaScript (SSJS), which extends JS to enable
backend access to databases, file systems, and servers. SSJS builds more scalable, event-driven, and non-
I/O (input/output)-blocking applications.

PHP code is executed
on the server, then
returned to the
browser as plain HTML.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com20

Backend Tools

The REST (Representational State Transfer) API is a resource-based architectural style that passes
representations between the client and the server. REST APIs are used to interact with database or backend
systems, are stateless, and authenticated. They allow us to Create, Retrieve, Update, and Delete (CRUD)
entities from a data store. (Ex. database, file system, etc.)

REST operates off six constraints, which define the RESTful style of programming:

• Uniform interface

• Stateless

• Cacheable

• Client-server

• Layered system

• Code on demand (optional)

Because Buildable software engineers comply with REST constraints, our applications are scalable, simple,
modifiable, visible, portable, and reliable.

SQLite is a self-contained, high-reliability,
full-featured, and open-source relational
database management system contained in a
C programming library. SQLite stores the entire
database as a single cross-platform file on a
host machine. Since it is a compact library, even
with all features enabled its size can be less than

500KB. It can be made to run in minimal stack
space. SQLite responds gracefully to memory allocation failures and disk I/O errors. All transactions are
ACID (Atomic, Consistent, Isolated, and Durable), even if interrupted by system crashes or power failures.

MySQL is secure at the enterprise-level, highly reliable,
and trusted by the world’s leading brands. Its extensible,
modern architecture at every layer in the database
allows for a flexible configuration that supports both
traditional and emerging enterprise use cases.

SQL Server is the gold standard on Windows
implementations. It runs on both Linux or Windows,
on-premises or in the cloud. It provides noSQL and JSON
capabilities which makes for an excellent choice for any web application.

With these resources at the ready, Buildable software engineers are prepared to develop sophisticated web
applications for your business.

SQLite empowers developers to
update content continuously and
atomically, so that little or no work is
lost in a power failure or crash.

SQL Server is trusted by the
enterprise market and MySQL is
trusted by companies such as
HP and Wikipedia.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com21

Build and Deployment (cont.)
When a new release must be built, source code is
fully checked out from source control, the version
number is incremented (automatically or manually,
at the maintainer’s discretion), the build process is
launched, executable code is bundled, and the release
candidate is deployed to a test server for integration
and quality assurance (QA) testing.

Once QA testing completes, our development team submits the release candidate to the client, who is
expected to conduct a QA process on their end. At the end of client testing, they can confirm whether the
software is operating as expected and all functionality interpretation differences have been resolved. If not,
then the development and release cycle will repeat.

Version numbers are usually displayed in the footer, in
the About section, or on the Login page of applications.
Regardless of application type, the build process will
always output code in what is called release mode, which
is optimized for speed. Web projects will add a few extra
steps: JavaScript syntax validation; typescript compilation
check; CSS, JavaScript, and HTML minification; and
bundling all these elements into the fewest number of
files possible.

The build process (web pack) will output the bundled file
and transfer it to a network folder to be archived, called
the Release Publishing Destination (RPD). For Windows
desktop applications, the software will typically be signed
and built into a self-installing package (MSI or Setup.exe,

for instance). In other cases, such as with UNIX services, the
software will be built with self-installing command-line capabilities. For web applications, the software will
be zipped into a self-containing archive.

All Buildable software is rigorously
tested in QA before deployment.

Each version of the software is
clearly labeled to avoid confusion
and help the user know whether
they are up-to-date.

Webpack bundles software into
one large file and is then securely
transferred to the client’s system
for installation.

The deployment script is always built to execute the following tasks:
• Backup of the current system as a rollback point, by creating a .zip file of the

current web application

• Installation, by downloading the release from the RPD and unzipping and
restarting services which require it (for example, NGINX and Kestrel)

• Rollback, which takes place in such a case where the installation fails, by
removing installed software, unzipping backup, and restarting services

Once the deployment is executed, the new version should be displayed on the home page of the web
application. Our process provides a reliable mapping between published release and installed release, as
well as providing a rollback mechanism whereby a prior release can be quickly restored. All servers hosted
by Buildable are backed up twice daily, to ensure a safety net in the case of unexpected challenges.

https://www.buildableworks.com

Whitepaper
BuildableWorks.com22

Authentication and Security
Among the many challenges that software engineers face, authentication and security are of extreme
importance. Yet, they are often under appreciated.

On the contrary, Buildable pays dutiful attention to developing secure applications that protect your
business’ and your clients’ information alike, on top of being created with beautiful interfaces and superb
functionality. With Buildable technology, your business
can focus on what it does best.

In today’s world, where so much personal
information is hidden within digital halls, software
engineers must ensure that they are developing
with authentication and security in mind.

When an application gives select users access to
restricted resources, processes of authentication
ensure that users are who they say they are.
Buildable handles this with JSON Web Token (JWT)s, which are signed tokens that contain the roles users
have access to. They are forgery-proof, meaning that a hacker cannot forge a token of their own unless
they have a private key, which only exists on the server in a secure folder. The token is created upon login
and sent back to the browser. This method of access is session-less. Therefore, it is easy to load balance–
called scaling–to a farm of web servers, if each server can extract the token properly.

Buildable provides exclusive access
to parts of applications with JWTs,
which cannot be replicated.

Using these
technologies,
Buildable can
provide the best in
software security.

We instill security in our applications
through the following methods:

• Ensure all communication happens over SSL (Secure
Socket Layer), a protocol for transmitting private
documents that use two keys, one private and one
public, to encrypt data

• Restrict access to SSH (Secure Shell)–a program to
connect with a remote computer over a network–only
allowing entry with certificate authentication

• Open only Port 443 on the server

• Use Fail2ban and Monit for monitoring and detecting
suspicious activity

Web applications are monitored with Monit, software configured to send email alerts when logs contain a
pattern or when the machine breaks a specific threshold. Monit comes packed with tons of useful application
checks, including memory usage, HTTP requests, and CPU usage.

Buildable applications are also strengthened with Fail2ban, which operates by monitoring log files for the
potential intrusion. Upon such an attempt, Fail2ban blocks potential intruders from the system for 24 hours
by adding rules to the firewall.

NGINX logs are also kept. NGINX is a web server that can be used as a reverse proxy, load balancer, and HTTP
cache. Its modular, event-driven architecture provides more predictable performance under high loads.
NGINX leaves a low memory footprint, which keeps your system fast and secure.

https://www.buildableworks.com

FOR MORE INFORMATION
www.BuildableWorks.com | sales@BuildableWorks.com
+1 (503) 468–4880 | 620 NE 3rd St, Suite A, McMinnville, OR 97128

http://www.BuildableWorks.com
mailto:sales%40BuildableWorks.com?subject=

